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We examine the nonlinear response of a drop, rotating as a rigid
body at fixed angular velocity, to two-dimensional finite-amplitude
disturbances. With these restrictions, the liquid velocity becomes a
superposition of the solid-body rotation and the gradient of a velocity
potential. To find the drop motion, we solve an integra-differential
Bernoulli's equation for the drop shape and Laplace’s equation for the
velocity potential field within the drop. The integral part of Bernoulli's
equation couples all parts of the drop’s surface and sets this problem
apart from that of the oscillations of nonrotating drops. We use
Galerkin's weighted residual method with finite element basis functions
which are deployed on a mesh that deforms in proportion to the
deformation of the free surface. To alleviate the roundoff error in the
initial conditions of the drop motion, we use a Fourier filter which turns
off as soon as the highest resalved oscillation mode grows above the
machine neise level. The results include sequences ¢f drop shapes,
Fourier analysis of oscillation frequencies, and evolution in time of the
components of total mechanical energy of the drop. The Fourier power
spectral analysis of large-amplitude oscillations of the drop reveals
frequency shifts similar to thase of the nonrotating free drops. Constant
drop volume, total energy, and angular momentum as well as vanishing
mass flow across the drop surface are the standards of accuracy against
which we test the nonlinear motion of the drop over tens or Aundreds
of oscillation periods. Finally, we demonstrate that our finite element
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method has superior stability, accuracy, and computational efficiency
over several boundary element algorithms that have previously
appeared in the literature.  © 1995 Academic Press, Inc.

1. INTRODUCTION

An infinite column of inviscid liquid at rest, held together
by the action of surface tension, has been used to model
liquid jet breakup ever since Savart [32] and Plateau [27]
observed and Rayleigh [29] proved that such a column is
unstable to infinitesimal axisymmetric disturbances whose
wavelength in the axial direction is greater than the circum-
ference of the cross section. This instability is caused by a
decrease of the surface area of the column and the con-
tinuous diversion of the e¢xcess surface energy to kinetic
energy of the growing disturbance. Rayleigh [30] also
found that the liquid column, whether inviscid or viscous, is
always stable to two-dimensional planar or translationally
symmetric perturbations that distort its cross section to a
noncircular shape. Thus, if the axisymmetric mode of
instability is suppressed, the liquid column is stable and
becomes an oft-used prototype of fully three-dimensional
drops. For example, a rotating captive drop [ 11] stabilized
against the Rayleigh instability by an axially symmetric
electrical field [12] can be approximated by the cylindrical
column,

Hocking and Michael [14] and Hocking [15] added

0021-9991,/95 $6.00

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form teserved.



4 PATZEK ET AL,

rotation to Rayleigh's analyses and examined the linear
stability of a gyrostatically rotating liquid column to planar
inviscid and viscous disturbances. The linear response of an
osciliating, two-dimensional liquid column rotating at fixed
angular velocity is governed by two waves that may become
coupled, depending on the velocity of rotation. Hocking
and Michael [14] showed that this column remains stable
to planar disturbances provided that the angular velocity of
rotation remains below a threshold value that marks the
first of a sequence of marginal stability points. At the first
point, the column becomes marginally stable to a two-iobed
perturbation; at the (n-1)7; point, it becomes marginally
stable to an n-lobed perturbation. Hocking and Michael did
not investigate the families that bifurcate or branch from
the family of perfect cylinders at the onset of instability;
such nonlinear bifurcating families were only recently
calculated [6]. .

In the last decade, interest in the study of rotating,
oscillating drops has been revived by the need to (1) guide
and support fundamental experiments with such drops that
are either free in space or levitated on earth [1, 31, 37], and
{2) advance methods of containerless material processing in
uitralow gravity [87. Motivated by recent experiments with
rotating drops, Busse [7] developed a linear theory of
oscillations of nearly spherical, rotating drops. However,
theoretical analysis of finite amplitude oscillations of
rotating drops has not received any attention to date and is
the goal of this paper.

Here we consider the finite amplitude oscillations of a
rotating two-dimensional drop of inviscid incompressible
liquid held together by surface tension (Fig. 1). In inviscid
incompressible flow, the material derivative of the vorticity
[3] in an inertial frame of reference is given by

(1)

FIG. 1. Translationally symmetric rotating drop; unit length section
liquid column.

Here v is the velocity, @ = V x v is the vorticity, and ¢ is time,
If, in addition, the oscillations are confined to cross-
sectional planes of the cylinder and are the same in all such
planes, i.e., translationally symmetric, then @ L Vv and

Daw
Dt"m (2)
1.e., the vorticity of fluid particles is time-invariant. This can
be explained as follows. When the unperturbed cylinder is
forced to rotate as a rigid body, both the angular velocity of
rotation and the vorticity are constant and uniform. Trans-
lationally symmetric oscillations of such a cylinder can only
shift the vortex lines and, therefore, the vorticity must
remain constant and uniform; the cylinder motion is irrota-
tionai relative to the solid body rotation.

In Section 2 we present the nonlinear equations that
govern the finite-amplitude oscillations of the two-
dimensicnal rotating drop and the boundary and initial
conditions used in the calculations. We show that when the
drop rotates, the balance of momentum at the drop/ambient
fluid interface becomes an integro-differential Bernoulli
equation. In Section 3 we present an implicit method of
integrating the equations governing drop motion in time
and introduce a Fourer filter to control and alleviate
roundoff error. In Section 4 we discuss the results and
compare the present method with published boundary
element algorithms. In addition, in Appendix A, we prove
that the oscillations of the two-dimensional rotating drop
conserve total mechanical energy and angular momentum.
The governing equations are transformed into their weak or
Galerkin form in Appendix B.

2. EQUATIONS OF DROP MOTION

Motion of a column of incompressible, inviscid liquid,
immersed in tenuous gas that exerts uniform pressure and
negligible viscous drag on the column, conserves mass and
linear momentum at all times, provided that the center of
mass of the column is not accelerated, and neither the liguid
evaporates nor the gas condenses. Thus, in a stationary
frame of reference,

Vovy=0 inV, (3)
and
ov p 1
—_— :—V —_ Zop2 i
R VX @ (p+20) in V. {4)

Here V is the drop volume, p the pressure, and p the density
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of the liquid. At the drop surface S(r), Eqgs. (3}-(4) are
subject to the kinematic condition

n-(v—vg)=0 on S(t), {5)
and the normal stress balance
p(x,t)= —2Ho on S{r). (6)

These conditions express the principles of mass and momen-
tum conservation at the drop surface, where the velocity is
v, the surface tension is o; and the local mean curvature H
is given by the surface divergence Vs of the outward unit
normal n [38],

H(x,1)=—1V;.n. (7)
The constant and uniform pressure outside the drop is set to
Zero.

The motions considered here are irrotational relative to
the solid-body rotation of the unperturbed drop. Thus, we
assume that the velocity v in Eqgs. (3)-(5) is the sum of the
solid-body rotation at a fixed angular velocity £ and a
gradient of velocity potential ¢(x, ) that represents a finite,
translationally symmetric velocity disturbance:

v=0re;,+ Vg in V. (8)
Here r is the radial distance from the rotation axis, In
Eq. (8) and below {e,, e,, e,) are the radial, azimuthal and
axial unit vectors of the cylindrical polar coordinate system
(r, 8, z) centered on the axis of rotation.

Equations (3) and (8) combine into Laplace’s equation
for velocity potential:

Vig=0 in?, (9}
The translationally symmetric cylindrical drop
V={(r,0):re[0,/(6,1)],0€[0,2n]} xz, (10)

is bounded by a free surface S(¢) represented in the cylindri-
cal polar coordinates as

r=f(6,t)e, +ze,, (11)
where f(0, ) is the interface shape function. Because of
translational symmetry, the problem is two-dimensional
and does not depend on z. The otherwise redundant z-coor-
dinate is kept only for dimensional consistency. The
representation (L1) is convenient, but it fails for certain

extreme deformations of the drop by becoming muitiple-
valued.

Equations (4) and (8) yield [14]

VB=2QVx (ge,)= —2{2e,x V¢ inl, (12)
where
P o Lo W
B=;+E+2(V¢'} —Z(Qr) +Qae inV. (13)

The quantity B satisfies Laplace’s equation within the drop
volume
ViB=0

inV. (14)

In the absence of rotation, £2=0, and Eq. (12) can be
readily integrated to B=0 (the integration constant can be
set to zero without loss of generality, cf. [20]). When Q #£0,
Eq. (12) is nonlinear: it can either be (i) linearized and
solved analytically for infinitesimal amplitude perturbations
from the cylindrical column shape [14], or {ii} it can be
integrated numerically, as in this paper, for finite amplitude
departures. Integration of Eq. (12) along the drop/ambient
fluid interface in the {r, 8) plane gives

Bls, 1) — B(0, r):j: VB-tds = —20 L (€. x V@) -t ds’

- —2!2J:n-V¢ds’,

(13)

with s denoting arc-length and t the unit tangent. B(0, f) can
be absorbed in the usual way by defining a new potential:

agqﬁ_j's(o, £y dr.

0

(16)

The overbar is suppressed hereafter. Note that B(0, t) is not
an arbitrary function of time. It is related to the mechanical
energy of a reference point on the drop circumference.
Nevertheless, B(0, 1} is a function of time only and can be
absorbed into a velocity potential.

Equations (15)}-(16), (13}, and (6) combine into an
integro-differential Bernouili equation for the evolution of
the free surface shape:

. Vwm_Liorrio?
—2Hp+a[+2(V¢») 2(Qf) +Qa€

- _zgrn.wds’ on (). (17)
0
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Thus the finite amplitude oscillations of the inviscid two-
dimensional drop rotating at fixed angular veiocity are
found by solving Laplace’s equation (9} in the drop volume
(10) that evolves according to the nonlinear, integro-
differential Bernoulli equation (17) at the drop surface {11).
The arc-length integral in Eq. (17} couples aff parts of the
drop surface and the solution method appropriate in this
situation is quite different from those used when the drop
does not rotate (e.g., [25 or 26]).

It is appropriate to measure length in units of the radius
R of the unperturbed drop and time in units of a natural

period ./ pR*/a. The corresponding dimensionless variables
are

It

i=1(a/pR*)'",
$=a(p/oR)"”.

x/R,

18
Q(pR%[a)'?, ()

it

%
(0]

These are the variables used hereafter but the tildes are
omitted.

In Appendix A, we prove that total energy and angular
momentum are conserved by the two-dimensional rotating
and oscillating drops. In Appendix B, we derive the weak or
Galerkin form of the equations of drop motion.

3. TIME INTEGRATION

3.1. Algorithm

After substituting the finite element representations
(571(59) (Appendix B) for the velocity potential, the free
surface location and the global coordinates, as well as their
partial derivatives with respect to ¢ and #, the Galerkin/
finite element residuals {67)}-(68) become a set of nonlinear
ordinary differential equations in time that can be expressed
as

where o = (o, ..., ay,), etc. (Fig. 2). Time derivatives in Eq.
(19} were discretized at the pth time step, A1, =¢,—1,_,, by
either first-order backward-differences (BD) or second-
order trapezoid rule {TR),

a(t,)=ci[alt,)—alr,_ )]/ 4, +c,6(1,_ ),
B(e,) =\ [Bi2,}— Bz, )1/ A1, + o B(1,_ ).

Here ¢, = 1, ¢, = 0 for backward-differences, ¢, =2,¢,= -1
for the trapezoid rule and a(¢,_,), &(z,_,), etc. are known
from the previous time step.

(20)

ISOPARAMETRIC ELEMENT

» ¢

DROP_SURFACE

o) = Lo (0¥ @)

(1.1)

UNIT_NORMAL
_ e~ fige

Y E Y z
fo +f‘

T Cw O
W n

SPATIAL COORDINATES

L i e 3(m-1)+1
o =2y (re) =Y Yoy (£.7)
j=1 m=1{=1
N ; 303 1yt
r=Lry'(re) = ¥ Lawy T e

=1 m=11f=1

VELOCITY POTENTIAL

#(ro1) = L, (t)(r.e)

j=1

FIG. 2. Spatial and isoparametric finite elements.
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Time discretization (20) reduces Egs. (19) to a set of
nonlinear algebraic equations. At every time step, these
equations were solved by Newton iteration that updates the
vectors of unknown coefficients a(z) and B(¢) by means of
the Jacobian matrix of partial derivatives:

dR, © R,

dat,, : Eﬁ—k Az, R,
............ A O R T (21)
ory  omy tLaB] LR}

dun,, . 0B,

The derivation of the elements of the Jacobian or “stiffness”
matrix from Eqgs. (67)-(68} is tedious but straightforward.

The initial condition chosen was that of an undeformed
drop suffering a disturbance in velocity potential propor-
tional to the nth harmonic:

£6,0)=1

(22)
#(r,0,0)=¢,r"cosnd, ¢$,20, n=2,34....
A first-order forward difference predictor,
a(’p—?I)=u(tp}+&(tp)4tp+ls (23)

Biz,, 1) =PBl1,) +pls,) A

F+is

was used with the backward-difference method. A second-
order Adams-Bashforth predictor,

At
alt,, ) =afr,) +—2%
Atp+1 a Atp+l o
x[(z—(———rfp )a(tp) ar, adt,_,)

(24)

p+l

Ble, . ) =Bz, )+

e

was used with the trapezoid rule. The L, norm of the
correction provided by Newton iteration, |d, ., ||.., was an
estimate of the iocal time truncation error of the trapezoid
rule [13]. Time steps were chosen adaptively by requiring
the norm of the time truncation error at the next time step
to be equal to a prescribed value, ¢,,

"“ﬂ(,, 1)]

Atp+l=Arp(£t/”dp+!”m)u3' (25)

Relative error of 0.1 % per time step (g, = 16~?) was set, and
at each time step usually two, but occasionally up to eleven,

Newton iterations were necessary to keep the corrector
error below 105,

Equations (21} were solved in double precision on an
IBM RS6000, Model 530, workstation with Hood’s [16]
frontal solver modified by Silliman [337, Walters [36] and
Kheshgi and Scriven {17]. A typical run required 8192 time
steps (cf. Appendix C),amesh of Ny x N, =48 %8 or 96 x 16
finite elements with biguadratic basis functions (2N, x
(2N, +2)=1728 or 6528 unknowns), and between 12 apd
48 CPU hours.

3.2. Solution Filtering

By means of computational experiments, we established
an approximate region of the phase space (2, ¢,) for each
wave number r in which up to 24 backward-difference time
steps with a fixed time increment At,=0.0005 were suf-
ficient to smooth initial conditions (22) before the second-
order trapezoid rule integration was used, The number of
these fixed time steps increased with the rotation rate, dis-
turbace amplitude and the initial wave number, and was
significantly higher than that suggested in [23] and also
that used in (25]. For exampie, for n=2, this region is
bounded from above by the following points (€2, ¢,)
{0, ¢, < 0), (1,0.7), (2,04), (2.449,0.1). Outside of this
region no degree of initial smoothing by backward-
differencing was sufficient to prevent the solution from
diverging at some later time ¢,,,,. For example, when 2 =2
and ¢, =0.5, Figure 3 shows that this dimensionless time
was ¢, =08.354. As the last three shapes in Figure 3 were
less than 2 x 10~ ¢ time units apart, the loss of solution was
catastrophic. When £2=2 and ¢,=07, the solution
diverged at ¢, =4.335 Thus, for 2=2, the numerical

1 | PR S

FIG. 3. Catastrophic growth of a random perturbation in the initial
conditions of drop motion caused by roundofl error when =2 and
¢>=0.5; the last three shapes are less than 2 x 10~* time units apart. The
solid line rotates with the solid-body rotation.
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algorithm was able to follow the motion of the rotating
oscillating drop slightly longer than 21 full rotations when
¢, =10.5, but barely longer than one rotation when ¢, =0.7.

Insight into the cause of this behavior was gained by
analyzing the coefficients of the Fourier expansion of drop
shapes calculated on a mesh with Ny x N, = 48 x 8 elements.
The highest frequency (“zigzag” mode) resolved by such a
mesh is # = 24, therefore the Fourier expansion of the drop
shape with 24 terms is sufficient to fully represent the
solution. In theory, since the initial disturbance in velocity
potential has only one (#=2) Fourier coefficient different
from zero, the drop shape’s Fourier coeflicients at small
times should decay at least exponentially with increasing
wave number. In practice, the spectrum seen by the com-
puter stops decaying because of roundoff error, turning the
Fourier coefficients for n > 4 into random noise. This noise
in the initial drop shape amounts to a spurious perturbation
of the desired initial condition (22). The amplitudes of all
wave number modes increase as time increases, but they
generally decrease as # increases at a given time. As already
noted by Krasny 19} and Loundgren and Mansour {22},
increasing the number of elements in the mesh only worsens
the problem for a fixed machine accuracy. This is because,
with more elements, higher wave numbers are represented.
Once spuriously perturbed by roundoff error, these amplify
quicker, ieading to a faster collapse of the solution.

Much like Krasny (197, we assert that a computational
noise is introduced by the machine representation of the
initial condition’s spectrum and (1) expand the drop shape
function f{#, 1), or velocity potential at the free surface into
a truncated Fourier series

No/2
a0, 1, )=1+ae(z, )+ Z a,{t,) cos nb

n=1

+b,(2,) sin n8, (26)
at the end of every time step /,, (2) set to zero all Fourier
coefficients a,(¢,) and &,(¢,) whose amplitude is less than
this noise level ¢,,,

S8, 1) = f (8, 1,), {27)
and {3) replace the calculated drop shape by its filtered
Fourier expansion,

f(Bis !p)=fs,‘(8¢" [p)9 i= ly "'sZNB . (28)
The coefficients of Fourier expansion are evaluated using
the same interpolation and integration procedures as those
used to integrate the finite element residuals and the
Jacobian. In order for an oscillation mode to grow, its
amplitude must exceed the noise level in a single time step
and once this has happened for every mode, the filter rurns

e Xe) E
001 Unfittered
0.005 -

0
Q005 |-

-0.01

D918

0.015

- Initial Filter Turmed Off at 0.12361 Time Unit

Dimensionless Amplitude of 12th Harmonic

0.005
0
0005
o0t
-0.015 I.
. Q 2 4 . [ 3 10
Dimensionless Time

FIG. 4. When £2=2 and ¢,=0.5, the amplitudes of the “middle”
{12th) cosine harmonic of the unfiltered (top) and initially filtered
(bottom} drop shapes are almost identical for ¢ < 10.

off and the computation proceeds normally. This technique
is well illustrated by the solution for £ =2 and ¢,=0.5.
With the noise level set to e, = 1071° the filter turned off
permanently at t =0.12361. As titne advances, the unfiltered
and filtered solution gradually diverge from each other. For
example, a plot of the “middle” (n=12) cosine harmonic,
Fig. 4, shows that over the first 10 time units the two solu-
tions are almost identical. Yet between 58 and 68 time units,
Fig. 5 shows that the filtered solution is different and
markedly smoother than the unfiitered one, and, moreover,
as shown in Fig. 6, the spurious high frequency waves are
absent in the filtered drop shapes. The computational
advantage of using the initial filter can be significant. After
6871 time steps, the elapsed time of the filtered solution is
30% longer than that of the failed unfilterad one. When the

0915 —

Unfiltered

Initial Fitter Turned Off at 0.12361 Time Unit

-0.005

Dimensionless Amplitude of 12th Harmonic

.05

62 [2)
Dimensionless Time

FIG. 5. When 2=2 and ¢,=05, the amplitudes of the “middle”
{12th) cosine harmonic of the unfiltered (top) and initially {iltered
{bottom) drop shapes become very different as time progresses (> 58).
Note the high frequency noise present in the unfiltered shapes.
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[70.867
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FIG. 6. The high frequency noise present in the unfilered drop shapes
when =2 and ¢,=0.5 (cf Fig. 3) is effectively removed by the initial
Fourier filter. The solid line rotates with the solid-body rotation.

filter was active, the approximation error measured at the
end of every time step as

Ny
\/Z LA, 2} = £ (8, 1,) )% (29)

i=1

was less than 10~ % The effects of initial filtering are gradual
and subtle. In contrast, when the drop shape (or velocity
potential} is filtered at every time step, the solution even-
tually becomes distorted; this is an important issue to which
we return to in Section 4.5.

It is worthwhile to note that solution filtering was
unnecessary in the -absence of rotation, regardless of the

Q.000 0604
b L
- - r— r:‘,_ -__“.
o - { i
Tr r
S +
T, J9 VPSSP EVEE E T T T
"

F

1

v}

2 -

0801 0928

- I

C o L -
r [

r_ -

1
«3 -2 -

-

[
c 1 2 3 -3 -2

~3

FIG. 7. Breakup of a cylindrical nonrotating drop {2 =0} caused by
an initial disturbance of amphitude ¢, = 1.21.

initial disturbance amplitude. Indeed, as shown in Fig. 7,
when 2 =0, filtering was unnecessary even for a solution
that ultimately failed due to drop breakup. This observation
is consistent with our previous results for axisymmetric free
drops [251, where four backward-difference time steps suf-
ficed to smooth the initial conditions, This work supersedes,
however, our earlier results for the two-dimensional
rotating drops [4-5]1. There, the insufficient mesh resolu-
tion and the short elapsed times of calculations suppressed
the high-frequency transients and thus did not allow us to
realize that we had problems with convergence.

4. RESULTS

4.1. Linear Theory

The computed dynamic response of an inviscid cylin-
drical drop to an nth harmonic disturbance in velocity
potential having small amplitude ¢, was compared with
predictions of linear theory. The linear response to such a
disturbance [14],

o, 0, y=g, r" cos[nl — (n—1) 2] cos{ar),

¢, <1,

f(6,n=1 +—}’fﬂ—i {ecos[nfB—(n—1)0r] (30)
o —Q
x sin(ot) — Q2 sin[nd — (n— 1) Q2t] cos(ar) },

a=/(n—1)[n(n+1)-0Q%],

is governed by a pair of anguiar velocities

Wy =(R—1)Q t+a. 31
Note that the imitial condition for the drop shape in this
work, f(8, 0)=1, differs from Eq. (30) evaluated at r=0.
Therefore, the numerical calculation goes through an initial
transient during which the drop shape “catches up” with the
disturbance in velocity potential. indeed, the initial condi-
tions (22} correspond to a pressure impulse that sets into
oscillation a gyrostatically rotating drop. ,
The real parts of w , are the phase velocities of disturban-
ces of wave number n and their imaginary parts determine
whether the disturbances grow or decay. When , is com-
plex, the oscillation is unstable, because one mode grows in
time while the other decays. The conditien for stable oscilla-
tions is that ew, be real, or that 2 <./n(n+1). Thus
instability of the cylindrical rotating drop of inviscid liquid
to the second cylindrical harmonic 1s predicted for
Q= \/6 = 2.4494897... . Figure 8 shows the variation of w2 ,.
for n=2 with the angular velocity of rotation Q< \/3
Because the wave corresponding to w_ travels around the
cylinder at a rate that exceeds the angular velocity of rota-
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4
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FIG. 8. The variation of the angular velocities of oscillations e, and
e _ with the angular velocity of rotation 2 for n=2.

tion £2, it is called a leading or fast wave. Similarly, the wave
corresponding to w _ is called a lagging or slow wave. When
the angular velocity of rotation exceeds . /n + 1, the lagging
waves, too, travel in the direction of the rotation and
approach the leading waves. When the rate of rotation
attains /n(n+ 1), the leading and lagging waves travel

around the cylinder at equal angular velocities. At this
point, as the linearized analysis of [ 147 first showed and the
finite element results of this paper confirm, the cylinder
becomes neutrally stable to an n-lobed (n= 2, 3, ..} pertur-
bation. Thus, translationally symmetric, inviscid liquid
drops rotating at angular velocities exceeding . /n{n + 1) are
unstable to infinitesimal-amplitude disturbances, though
they succumb sooner to finite-amplitude disturbances.
Interestingly, close to the linear stability limit, e.g., when
2 =2.4490, and with a smalil-amplitude initial disturbance,
e.g, ¢.=0.1, the drop oscillations were stable for 8192
timesteps {f.,., = 349.031), but the computed oscillation
amplitude was as large as 0.4.

Just like electrical charge, rotation changes the dynamics
of drop motion by allowing resonances between different
normal modes. This occurs whenever

WOy =k, , k22, m>n 3
This is shown in Figure 9. For example, the slow wave
ws. =5 resonates with two slow waves, wo_ and w4_, at
two different angular velocities £2. Most of these resonances
are weak (k > 2}, and develop only gradually through non-
linear mode coupling when the drop oscillation is started by
a single-mode impulse, as in Eq. {22). Therefore, the ability
to follow the drop motion for very long times is essential.

42, Nonlinear Oscillations

In this paper, angular velocities ¢», of drop oscillations
were found by Fourier spectral analysis of the free surface
motion at fixed 8, e.g., f(0, ¢) (see Appendix C). The Fourier

13 -
— 120
ORPES 120 § 10
c 108 4 g4

99
2 1 s § %ég‘é
0] 88 @ 77
- = 80 84
g 10 BB, 7785 60
ic 0% wss 729 3%
" B 63 55 B 33
Q ol & 50 # g0
> Resonant Modes 55 9
= a8 @
QO B 4 &
.g fS 36 @
2 7t 3552§ B
= 28 ¢ 24 @
8K L 24%12 =%
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@ ] @2l we 8 e
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< 5 15 ¢ 2 e
10 @
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4 5 6 7 8 2] 10 1 12 13
Base Mode

= Fast with Slow

+ Slow with Slow

FIG. 9. Mode coupling for the translationally symmetric rotating drop; resonance of normal modes.
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power spectra presented here were calculated with a
modification of the standard routine spectrm( ) in [28].
Sample results for the drop response to ¢,=0.1, 0.2, 0.4,
and 0.5 are shown in Fig. 10 when £2 = [. Absolute values of
dominant frequencies |w. |, normalized to 1 for con-
venience, are those that correspond to maxima in the
Fourier power spectra. The frequency resolution, equal to
of the uniform spacing between sampled frequencies, is
shown as error bars in Figs. 11 and 12. These error bars
increase with the disturbance amplitude because the elapsed
time of oscillation decreases when the tatal number of time
steps is held fixed (8192). First, we note that the calculated
response to small amplitude disturbances agrees weil with
the linear theory. Second, as with oscillating axisymmetric
drops [35, 25], the absolute values of the angular velocities
of both waves decrease as the disturbance amplitude
increases. This decrease is approximately quadratic over the
range of ¢, values studied. It is noteworthy that the fast
waves slow down at a higher rate than the slow ones: this
suggests that at any rotation velocity below the linear
stability limit (Q2 < \/6), the drop will become unstable for

Disturbance Amplitude = 0.1
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§
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@
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T
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1} 2.96
g 3 1.08
Bl
@
2 06
§ I
b
ﬂ o4 |
g
E
2 ¢2 -
% \ ) 3 v : s

Dimensionless Angular Velocity

an initial disturbance amplitude large enough to cause both
waves to resonate,

4.3. Conservation of Mass, Energy, and Angufar Momentum

As the disturbance amplitude increases, the dominant
frequencies shift and the numerical results can no longer be
compared with prediction of linear theory. Instead, we test
how nearly constant is the drop volume ¥, and how nearly
vanishing is mass flow Q(t) across the drop surface in the
plane of oscillation:

V(1) =—;-f:“f2 8,
n f, (33)
0l = fo (¢, ~Fbo—/- Qfg) fdb.

Here volume is measured in units of R* and mass flux in
units of ./epR’*. For moderate and large amplitude oscilla-
tions reported in this paper, the fluctuations in drop volume

Disturbance Amplitude = 0.2

.
b
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'r 286
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04 |
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° N (. Jh.l ) L
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FIG. 10. The normalized Fourier power spectra when 2 =1 and for ¢,=10.1, 0.2, 0.4, and 0.5. Note the tight frequency resolution afforded by the

long elapsed oscillation times (see Appendix A).
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FIG. 11. The decrease of the angular velocity of oscillations with

initial disturbance amplitude ¢, when £2=1; initial impulse, second
cylindrical harmonic.

and mass flux across the interface were of the order of
4x 10~ *and 10 —'°, respectively, i.e., they were less than the
time truncation error ¢,.

In an inertial frame of reference, the total energy of a
rotating drop can be split into kinetic and surface energy
contributions:

2n af
Exu):%fo L (Sre, + Vo) r dr do

X 2
=% : '(:[erz + (qbf + %") + 2Q¢9]

x r dr d8, (34)
n
Ey=[" 4730 (35)

0
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FIG. 12. The decrease of the angular velocity of oscillations with
initial disturbance amplitude ¢, when 2=2; initial impulse, second
cylindrical harmonic.
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FIG. 13, Within the numerical accuracy, a translationally symmetric
cylindrical drop, rotating at fixed angular velocity, conserves both energy
and angtlar momentum!; 2 =2, ¢, =0.5.

(in units of #R?), The drop’s angular momentum is

Li1) j J'(.Qr + @) rdrdo (36)

{in units of \/apR’). Equation (34) has three terms. The
first one is the kinetic energy of rotation, the second is the
kinetic energy of the disturbance velocity, and the third one
is the interaction between the rigid body rotation and the
disturbance velocity in the 0-direction. The first two terms
are positive-definite, whereas the third one is negative, as
shown below. Depending on £, the components of kinetic
energy are either in phase or out of phase.

As shown in Appendix A, total energy of the drop is
always conserved, and so 15 its angular momentum. Figure
13 shows that for £2 =2 and ¢, = 0.5, the total drop energy
and angular momentum are conserved to within 2 x 10~*

15

13/41r Total Enargy
Surface Enargy
21r
L st /\
g L3 iGlad J#2
& ﬂlg

.swv N

4 .,
Time

FIG. 14. The three components of the kinetic energy plus the surface
energy add up to a constant total energy of 137/4 when 2 =2 and ¢, =0.5,
as predicted from linear theory, and remain so throughout the entire
simulation only because energy is conserved. On the other hand, the
oscillation frequency is markedly lower than that of linear oscillations.
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FIG. 15. A sequence of unfifiered drop shapes when @ =2 and ¢, =0.5. The elapsed time ¢ is listed above each drop shape. The solid line rotates
with the solid-body rotation and is not followed by the drop shapes because of the presence of running waves.

and 2x 107, respectively. The initially filtered solution
begins to loose accuracy after 80 units of time.

It can be shown that with the initial conditions (22), the
total energy and angular momentum of the drop are

E,=1(2n¢2 + Q) n+ 2, (37)

and
L.=

.=1n02. {38)

R

For n=2, one can show that the three components of the
kinetic energy are

Ep(t)m ini® + Og3) + ngp3 + O(¢3)

42

- gisind -0 (39)
Similarly, surface encrgy is
E(t) = 2n + O(d3). (40}

The components of the total drop energy are shown in
Fig. 14 for 2=2 and ¢, =0.5.

4.4, Drop Shapes and Pressures

Two sequences of drop shapes for the following initial
conditions: 2=2and ¢, =05, and 2=1 and ¢, =0.5, are
shown in Figs. 15-18. These solutions were not filtered and
in both cases a high [requency noise lead to the eventual
solution breakdown at £ > 20 and 33, respectively.

The pressure field in the drop is obtained from
Egs. (11)-(12) as a by-product of the finite element calcula-
tions and lends further insight into the physics. All pressure
fields in Fig. 19 were calculated when the osciliation had
closely approached its full amplitude. Figure 19a shows that
the pressure field inside a slightly perturbed drop, ¢,=0.1,
rotating at angular velocity £2=1 at time ¢=0.643,
qualitatively follows that predicted by the linear theory:

p =427 + Re{ig,re™ s [ (n - DR -0, 1} (41)

3182
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FIG. 16. An enlargement of selected drop shapes in Fig. 13 reveals a
high frequency noise leading to solution breakdown at t+ = 20.420. The
solid line rotates with the solid-body rotation; 2=2; ¢, =05.
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FIG. 17. A sequence of unfiltered drop shapes when £2=1 and ¢, =0.5. The elapsed time ¢ is listed above each drop shape. The rotating line rotates
with the solid-body rotation and is nos followed by the drop shapes because of the presence of running waves,

In such a drop, the isobars can be plotted as the concentric
circles generated by the gyrostatic pressure, 3r°, and
deformed by the oscillatory pressure, Re{ig,r" e/~ =0
[(n—2)§ ~w ]}, the latter being proportional to the dis-
turbance amplitude, ¢,, and rising as r” until the free surface
is reached, i.e., as r — /. As a result, the isobars not cnly get
denser, but they also deviate from their gyrostatic shape as
the drop surface is approached. Nounlinearity of the large

16.643 T

T

365436

B
T

-2
)
H

-2 -1 ] 1 1 -1 -1 o) 1 2

FIG. 18. An enlargement of selected drop shapes in Fig. 17 reveals a
high frequency noise leading to the solution breakdown at ¢ =35.436. The
solid line rotates with the solid-body rotation; 2 =1, §,=0.5.

amplitude oscillations (Figs. 19b-¢) is niow apparent; the
isobars in highly deformed drops, ¢, = 0.5, are concentrated
near the crests of the waves and become distorted by mode
coupling.

4.5. Comparison with Boundary Element Methods

In free surface flow problems, numerous other smoothing
techniques have been employed over the years, such as the
five- and seven-point smoothing techniques [21], regrid-
ding I'10], and curvature damping [24]. In a more recent
paper, Pelekasis er af. [26] used a boundary element (BE)
method to solve Laplace’s gquation inside a nonrotating
axisymmetrical drop and a finite element (FE)} method to
solve the equations describing the evolution of the drop sur-
face. In that work, both artificial viscosity and a fourth-
order surface diffusion technique (following [22]) were
used to dampen high frequency noise. It is significant that
none of the boundary element algorithms above employed
the initial Fourier filtering [19], a technique also used in
this work. We suspect that this is caused by inherent
instabilities in these algorithms which are due to the BE
technique being used in conjunction with explicit methods
of time integration; evidently, these algorithms require
smoothing at every time step to avoid failure. Pelekasis er af.
[26] give the most thorough comparison of various BE
techniques to date. In the BE part of their algorithm,
Pelekasis at af. use the direct application of Green's theorem
to obtain a Fredholm integral equation of the first kind and
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FIG. 19. Pressure fields inside drops rotating at angular velocity (2= 1. Isobars taken at equal intervals in pressure for: (a) ¢,=0.1, r=0.643;
(B) ¢ =0.5, 1 =0.560; (c) b, =09, r =0.335; {d) $;=0.5, 1 = 0.268; (&) g, = 0.5, 1=0.162.

an indirect formulation, using a distribution of dipoles, that
leads to a Fredholm integral equation of the second kind.
They use both quadratic and B-spline basis functions and
carry integration in time with explicit schemes with constant
time steps. Although these authors mention an implicit
scheme, they do not discuss predictions based on it
Pelekasis et al. then compare the direct and indirect
methods, each with quadratic or B-spline basis functions,
and with and without continuous numerical filtering. The
authors carry their calculations with 21, 26, 41, 51, 81, and
101 nodes to ¢ = 2, and sometimes ¢ = 8, claiming that these
are very long integration times necessary to capture the
nonlinear effects as accurately as possible. By way of con-
trast, our simulations are carried out to t= 100 or even
t=350 to achieve the desired level of accuracy in the
Fourier spectrum (Appendix C) and to test the stability of
our algorithm.

To compare our FE method with the hybrid BE/FE
methods described by Pelekasis er al, we calculated the
drop motion resulting from an initial disturbance in velocity
potential proportional to the fourth cylindrical harmonic
with amplitude ¢, = 0.3. Two general cases were considered:
(1) a drop rotating at £2=2 and (2) a nonrotating drop
2=0. For the case of the rotating drop, case (1), the
filtering was applied to the initial drop shape and the filter
turned itself off when the amplitude of every mode exceeded
the noise level, as described in Section 3.2. For the case of
the nonrotating drop, case (2), three subcases were con-
sidered: (2a} calculations were carried out without the filter;
(2b) the filter was forced to be on for the first 50 time steps;

and (2c) the filter was forced to be on at every time step.
Moreover, all of the previous cases were forced to run for
8192 time steps. For the rotating drop, the simulation
reached a time of =140 after 8192 time steps. This took
32 h of CPU time to complete or, equivalently, 822 CPU
seconds per time unit. The initial filter turned itself off after
six time steps at ¢=0.020207. The energy was conserved
within 0.09% and the angular momentum within 0.15%
(Fig. 20). In the case of the nonrotating oscillating drop
(2a), Fig. 21, the total elapsed time of the simulation was
t =208, which took 32 h of CPU time, or 554 CPU seconds
per time unit. The total energy was conserved to within
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FIG. 20. Conservation of total mechanical energy and angular
momentum when 2 =2 and ¢, = 0.3. Here the initial filter turns itseil ofl
after the sixth time step.
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0.20%. In Case 2b, Fig. 21, the total simulation time was
t = 246, which took 32 CPU hours, or 468 CPU seconds per
time unit. The total energy was conserved to within 2%. In
contrast, in Case 2¢, the total simulation time was f =332,
which took 24 h of CPU time or 260 CPU seconds per time
unit. In this case, the time step was artificially limited (to be
consistent with the other runs) from increasing even further.
However, 6.5% of the total energy was lost during this
simulation, as shown in Fig. 22, Figures 23 and 24 show
that numerical solutions in Cases 2b and 2c are virtually
identical within the first four time units, but they evolve in
dramatically different ways as time progresses, as shown in
Figs. 25 and 26. We therefore caution that accuracy and
stability comparisons of the short-time solutions obtained
with different numerical methods will often be invalid for
the long-time solutions. We propose that such comparisons
should be made for a fixed dimensionless time of oscillation
or for a fixed number of oscillation periods. We also caution

0.3
0.3
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that extensive solution filtering that must be employed by
various algorithms that have appeared in the literature is
bound to cause the long-time response of the simulated
system to differ from that of the actual physical system, a
serious problem.

Although direct comparison of our algorithm with those
of others is often unfair to our algorithm because we use
larger oscillation amplitudes, and rotation introduces addi-
tional severe numerical difficulties, this is what we find:

« Our jmplicit algorithm uses an adaptive time step
whose length depends on the severity of the problem and
varies between 0.0005 (lower limit) to 0.5 % of the minimum
period of oscillations given by linear theory (upper limit for
improved accuracy of Fourier spectra). On average, our
time step is 0.01-0.08 of a time unit. This is several orders
of magnitude larger than the constant time steps of
0.00025-0.008 used by Pelekasis et al. Evidently, this fact
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FIG. 24. Decomposition of drop shapes into linear modes when 2 =0, ¢, =03, 1< 4, and with the shape filter forced on at every time step. Note

that the drop respose here seems to be identical to that shown in Fig. 23.
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coupling develops.

plays a big role in offsetting the cost of inverting a matrix at
each time step during our calculations over algorithms
based on explicit methods which do not require solution of
a system of algebraic equations, as shown below.

+ With 96 surface nodes, our FE algorithm requires on
average 2-5s of CPU time per time step on the IBM
RS6000, Model 530, versus 15-22 sec of CPU time on
the IBM 3090 reported by Pelekasis et al. for 101 nodes.
With fixed time steps 4¢=0.001, this translates into
14,500-21,750 CPU seconds per time unit on the IBM 3090
for the BE methods, as opposed to 200-900 CPU seconds
per time unit on the IBM RS6000, Medel 530 for our FE

method. In other words, our method may be a factor of 100
more efficient than the BE methods discussed by Pelekasis
et al. This comparison neglects the fact that the IBM 3090
1s a supercomputer class machine that is faster than the IBM
R86000, Model 530.

» We use only the initial Fourier filter to cope with finite
machine accuracy. The use of this filter is unnecessary within
the first 10 time units of calculations, even for computing the
strongly nonlinear oscillations of rotating drops. Moreover,
the use of a filter is never necessary when the velocity of rota-
tion is set to 0, a situation which more closely approximates
the axisymmetric {ree drops considered by Pelekasis ez al. In
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FIG. 25—Continued

contrast, the BE algorithms either fail catastrophically afier
two periods of oscillation {cf. Fig. 3 in [26]) or have to be
smoothed after every time step. We assert that this repeated
smoothing skews or even destroys the subtler features of the
nonlinear dynamics, such as coupling between modes and
weak resonances (see Figs. 25 and 26 and Section 4.1).

o OQur criterion of solution failure which, for example,
amounts to an increase of the total energy by 20 parts in
10,000, after as many as 80 time units (Fig. 13), is usvally
much more stringent than that listed in Table III of [26]
after only 2 or 10 time units. Tt seems that the BE algorithms
used by Pelckasis et al. are able to conserve total energy for

a few periods of oscillation and rapidly deteriorate there-
after. Lundgren and Mansour’s [22] method seems to be
more robust, allowing in some cases time integration for up
to 80 time units.

5. DISCUSSION

According to the foregoing results, the dynamics of a two-
dimensional rotating drop is different from that of axisym-
metric but nonrotating globular drops (cf. [22, 25, 261).
Particularly striking is the difference between the types of
surface waves that can be seen along the interface separating
the nonrotating and rotating drops from the surrounding
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that energy is nor conserved and mode coupling is much weaker.

gas. The former drops display a much simpler pattern of
standing waves, whereas the latter ones display an intricate
patiern of traveling or running capillary waves. As the rota-
tion rate increases, the amplitudes of these capillary waves
grow,

The Galerkin/finite ¢lement method used here to deter-
mine the oscillations of rotating cylindrical drops is an
extension to integro-differential equations of the “method of
lines” successfully used in simulations of steady (18] and
unsteady [17] viscous film flows, and large-amplitude
oscillations of inviscid [257 and viscous [2]) free drops.
Modeling the breakup of cylindrical drops rotating at

angular velocities either faster than \/n(n+ 1) while sub-
jected to_infinitesimal-ampiitude disturbances or slower
than /n(n + 1) while subjected to finite-amplitude distur-
bances should now be possible by merging the method
presented in this paper with either of the two following
techniques: (1} a composite coordinate system, which has
already been used in 6] to follow gyrostatically rotating
cylindrical drops ail the way to breakup or (2) elliptic mesh
generation, which allows easy discretizaticn of domains of
arbitrary shape [9].

The Fourier filtering of drop shapes at very early times is
invaluable in removing noise from the initial conditions of
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FIG. 26— Continued

drop motion caused by finite machine accuracy. Turning on
the filter initially permits computation of the drop motion
for tens or even hundreds of periods of oscillation, while at
the same time drastically reducing computation time.
Without the filter, the computations would ultimately break
down for a variety of initial conditions.

In summary, our FE method is very competetive. In its
present, constant spine, implementation, this method fails
when the drop becomes too distorted. On the other hand,
our method has superior stability, accuracy, and computa-
tional efficiency over several BE methods discussed in the
literature.

APPENDIX A: CONSERVATION OF ENERGY AND
ANGULAR MOMENTUM

The motion of a two-dimensional rotating drop conserves
total mechanical energy, that is the sum of kinetic energy E
and surface energy £,. This result is counter-intuitive
because the angular velocity of rotation also remains con-
stant as the drop deforms. The mechanical energy balance is
obtained by taking the scalar product of Eq. (3} with v.
After making use of translational symmetry of the drop
motion, fluid incompressibifity, and some rearrangement,
one obtains
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{42)

Dl ,
Z(zp?)=-v.-Vp.
5ilze)= -

To obtain total energy, we first integrate Eq. (42) over the
volume of a unit length slice of the drop and use the Gauss
theorem to transform the right-hand side into a surface
integral over the entire closed surface of the slice
Sar=3(t)+ 8, + 8,, shown in Fig. 1. Then we use Eq. (6)
to eliminate pressure along the drop surface S{¢), and note
that translational symmetry requires v - n to vanish on both
cylinder cross sections S, and S;:

%L%ptﬂ dy = -—len-vpdS

=af 2Hv -n dS. (43)
St

The left side of Eq. (43) is the rate of change of kinetic
energy dE . /dr. Hence we need to show that the right side of
(43) is the negative of the rate of change of surface energy.
If the surface of the unit length slice of the drop is denoted
by the vector r at time ¢, and the vector r' =r + dr at time
{ + 4¢, then the displacement of an element of surface area is

[38)

8(dS) = dS(1 + 1) — dS(1) =V - Ot dS, (44)

where the surface divergence Vg and the surface area element
dS are evaluated on the undisplaced surface S(z). Integra-
tion over the drop surface (per unit length) at time t and
application of the surface divergence theorem (SDT} give

a8 =
S(i)

5(d$)=j V. érdS

AYE3]

= ~j 2H 5t -n dS. (45)
RY§)

Line integrals that do arise from use of the SDT do not
appear in Eq. {45) becaunse translational symmetry requires
that r-m =0, m being the outward binormal unit vector
along both edges of S(¢). Therefore, the total time derivative
of the surface energy is

dE das Ny
—_— =g — =g —=

_ »a_( 20 nas
dt dt ot S(1}

=_g[ 2Hv -0 dS. (46)
S(1)

From Eqgs. (46) and (43) it immediately follows that

E(EK"!'ES):O.

T (47)

Hence total energy is conserved during the translationally
symmetric oscillations of incompressible, inviscid liquid
drops.

Similarly, we can prove that total angular momentum L
is conserved during the drop oscillations. The angular
momentum balance is obtained by taking the vector
product of Eq. (3) with r. After some rearrangement:

—D— (prxv)=Vx {'pr).

F2 (48)

To obtain total angular momentum, we integrate Eq. (48)
over the drop volume (per unit length) and use the Gauss
theorem to transform the right-hand side into a surface
integral. Then we use Eq. (6} to eliminate pressure along the
drop surface and translational symmetry te eliminate
contributions from both ¢ross sections:

dL d
;;»ELp(rxv}dV—LmnxrpdS

=—0J 2Hnxr dS. (49)
Sit)

The surface divergence theorem, together with translational
symmetry, yields

— 2Hnxr dS= VxrdS=0.
S(ry S(ny

(50)

Equations {50) and (49) prove that total angular momen-
tum is conserved during the translationally symmetric
oscillations of an inviscid, incompressible rotating drop:

Lo

7 (51)

Without the requirement of translational symmetry, neither
the total energy nor angular momentum of an oscillating
drop rotating at constant angular velocity is conserved. This
makes two-dimensional rotating liquid drops especially
useful in testing the accuracy and long-time stability of
numerical algorithms when oscillation amplitude is large
and comparison with linear theory no longer holds.
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APPENDIX B: REDUCTION TO GALERKIN FORM

The equations of drop motion in weak form are:

| Corwiav=0  yoeNy ()

Loo 1o : ’
Lm[‘mi(v"’) 3 (20 + 04,422 [ n-Vpds _2;;]

xe, niy’dS=0, Yi(B)e {Ng}. (53)

These can be reduced to first order with the use of Green's
theorem,

| ve -Vl,b"de—J‘S( Y0V ds=0,

vie {N}, (54)

and the surface divergence theorem [38],
1 1 5
'[ {{¢,+— (V) —=(Qf VP + Q¢+ ZQJ. n-Vg ds'
S0 2 2 o

xe,onllff+Vs'(¢je,)} ds =90,

W(0)e{Ns}, (55)
where
Vs-(¢fe,)=fi}“2‘5—j}’i§”1,
; ’ (56)
(-)ys%, v=120r

{ N} is the set of N finite element basis functions ¥’ chosen
to approximate velocity potential

¢(ra 9’ I)= Z ﬁi(t) 'ﬂi(r? 6)9

ie{N}

(57)

and { N} is a subset of { N'} that enumerates the free surface
location

f{es t)= z

e {Ng}

(1) (0). (58)

Here §; and o, are the unknown and time-dependent coef-
ficients of the approximation.

The weighting factor e, -n in Eq. (53) helps to reduce
twice the local mean curvature of the free surface, 2H, to
first order (cf. Eq. (7)). Equations (57)-(58), in turn, define
partitions of the drop cross section in the (r, ) plane into

quadrilateral elements, each bordered by a pair of fixed
spines, # =const, and a pair of curved sides that move in
proportion to the free surface position,

¥ =

Z rr[“j(t)] y'(r, 8)
ie{AN)
je{Ng}

b= 3 64%0)

ic (N}

(59)

where r; and @, are the nodal values of rand &; see Fig. 2. In
this representation, values of r; depend on the free surface
shape, whereas those of 8, do not. If N, denotes the number
of elements in the r-direction and Ny is the number of
elements in the 8-direction, then Nz=2Ny+1 and N=
(2N, + D(2Ny+1).

Because the integration is ultimately performed numeri-
cally in a fixed Cartesian coordinate system, the finite
element approximations (57)-(58) are further mapped onto
the unit square with coordinates (&, #}e[0,1]x [0, 1]
The mapping is done by isoparametric transformation [34 )
of r=r(& n)and 8 =8(£), and the Jacobian of this transfor-

mation
_ a(r, 8) (86)(6r) _
J= =l =N I1= 6
e m \aENan) =

absorbs the evolution of the drop shape. # does not depend
on # because the spines are lines of constant &:

(60)

a0 .18 J
il Ifég " eh)
E( )=aa;()

The corollary equations for free surface derivatives are even
simpler, e.g.,

(62)

In what follows, the subscripts ¢ and n indicate differentia-
tion with respect to these variabies.

Finite element basis functions ¥'[r(¢, n), 6(Z)] e {N}
and y/[8(&))e {Ny} are locally defined on the unit square
and are also used to approximate the global coordinates »
and &:

-3

i N
S

0= 3 64 ),

ie {N}

ACAOITATE )
(63)
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Equations (55}-(56) require that the basis functions be at
least continuous; therefore, the C?® biquadratic basis func-
tions ¢'(& n), i=1,..,9, and quadratic basis functions
Yi(&), j=1,2,3, were used to approximate the velocity
potential ¢, the free surface location £, and the spatial coor-
dinates » and 8 (Fig. 2). Kinematic condition (5) is used to
evaluate the surface integral in Eq. (55) and the line integral
in Eq. {36},

1+ 96
VARSF

Here fiis the time derivative of /£, taken at fixed isoparametric
coordinates. The surface F=r—f(0, ¢)=0 is material,
hence its time derivative dFjdr=0F/01+v,-VF=0.
Inasmuch as (0F/0t), o= —(9f/01); ,= —f and VF=
n./f*+ f3/f, Eq. (64) follows (cf. [17, 25]).

With Eqs. (56) and (64) substituted for Vi-(y’e,)
and n-Vg, dV=rdrdidz, dS=/ "+ f2d8dz, ds' =

n-Vg= (64)

f*+ f2 d9', integration over z€ [0, 1], and ¢, = ¢ — /4.,
Eqs. (54)-(55) become
2n af .
'[ JV@S-V!}J’rdrdB
0 O
[T apvia=o. yen), (6)
2% e e i 1
[74]4- s +5 01 -3 @y + 2,
a o .
+20 [ fii+ape o |
0
[+ .
— 1 d0=0, fe [Nl 66
+ f,———2+f5} VeVl (66)

Finaily, isoparametric transformation of Egs. (65)-(66)
yields the Galerkin/finite element residuals on a fixed,
cartesian domain (£, 1)e [0, 1] = [0, L j:

J— ! l¢’1 i
R=6, L J‘D W dn

Tt e i _Te i\
+9€j0 f (m rﬂm)(wf r”t!f,,)rdédn

[ @S+ apom &,

wen 24

T (m “4,) |wa

ie {N}, {67)

MREITH
0

JOS S
! r 0 1. ;
af |6-70,-Fr | a

s | [0+ opra

+ 3 [0 frerasa]

N7

xSy dE, je{Ng). (68)
It is noteworthy that the inner line integral in Eq. (68) has
contributions from all free surface elements {N*} between
#=0 and the current 8, ic., every free surface residual is
coupled to all preceeding ones. To solve this problem, we
have introduced 2 fictitious element that includes all free
surface nodes. Every node in this additional clement
accumulates an appropriate portion of the line integral,
which in turn is assembled simultaneously with the first two
terms in Eq. (68). This approach has proven to be computa-
tionally efficient and relatively easy to program.

Specification of the initial shape of the free surface and the
initial value of the velocity potential field

S0, 1=0)=/y(8),  @(r, 0, 1=0)=go(r,8), (69}

and the periodicity of both the free surface shape and
velocity potential field,

f6=0,1)=f(0=2m,1),

{70
é(r,8=0,1)=¢(r, 8=2m, 1),

complete the mathematical statement of the problem,

APPENDIX C: POWER SPECTRUM OF
DROP OSCILLATIONS

Let T be the total time of drop oscillations, N the number
of data sampling points (a power of 2), /. the Nyquist fre-
quency, 4f a sampling interval in frequency, 4 a constant
sampling time interval, and M =iN the size of data
segments overlapping by one half of their length {to reduce
the variance of the power spectrum estimate, [28]). Then

T
4=~ (11)
il ,
fc_zA! ( )
Af=_1__i§[___1 2 (73)
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The sampling interval for the angular frequency o is

4
Aw =2z Afz-; (74)

To compare the results of numerical analysis to the linear
theory, one should make the relative error

Aw
(n=1)2—/(n~1)n(n + 1)~ 27’
as small as possible. Combining Eqs. (74) and {75) then

yields the elapsed time of drop oscillations required to
achieve accuracy ¢4,

(75)

Epr=

o 4n
erln=1Q2—/(n—Vlaln+1)—

For example, if £¢,-==0.01 and 2 =1, then T = 1016.

%]
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